Formula Sheet For General Chemistry (Nov. 16 2007)
Blinn College Learning Center

DESCRIPTION	EQUATION
Ideal gas equation	$P V=n R T$
Adibiatic change	$P V=k$
Charles' Law	$\frac{V}{t}=k$
Bohr Radius	$a_{0}=\frac{\hbar^{2}}{m_{e} k e^{2}}$
Radii of stable orbits in the Bohr model	$r=n^{2} \frac{\hbar^{2}}{m_{e} k Z e^{2}}=n^{2} \frac{a_{0}}{Z}$
Van der Waals equation	$\left(P+\frac{a n^{2}}{V^{2}}\right)(V-b n)=n R T$
Entropy Change	$\Delta S^{\circ}=\sum S^{\circ}$ products $-\sum S^{\circ}$ reactants
Enthalpy Change	$\Delta H^{\circ}=\sum H_{f}^{\circ}$ products $-\sum H_{f}^{\circ}$ reactants
Gibb's Free Energy Change Defined	$\Delta G^{\circ}=\sum G_{f}^{\circ}$ products $-\sum G_{f}^{\circ}$ reactants
Gibb's Free Energy Change in Terms of Enthalpy, Absolute Temperature, and Entropy	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
Gibb's Free Energy Change in Terms of Gas Constant, Absolute Temperature, and Equilibrium Constant	$\Delta G^{\circ}=-R T \ln K=-2.303 R T \log K$
Gibb's Free Energy Change in Terms of Number of Moles, Faraday, and Standard Reduction Potential	$\Delta G^{\circ}=-n \Im E^{\circ}$
Reaction Quotient	$\begin{array}{\|l} \\ \\ \text { where } \\ \\ \\ a A+\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\ \end{array}$
Electric Current	$I=\frac{q}{t}$
Cell Voltage	$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{R T}{n \Im} \ln Q=E_{\text {cell }}^{\circ}-\frac{0.0592}{n} \log Q$

Relationship between Equilibrium Constant and Cell Voltage	$\log K=\frac{n E^{\circ}}{0.0592}$
Molar Heat Capacity at Constant Pressure	$C_{p}=\frac{\Delta H}{\Delta T}$
Partial Pressure of a Gas	$\begin{aligned} & P_{A}=P_{\text {total }} X_{A} \\ \text { where } & X_{A}=\frac{\text { moles } A}{\text { total moles }} \end{aligned}$
Total Gas Pressure as Sum of Partial Pressures	$P_{\text {total }}=P_{A}+P_{B}+P_{C}+\ldots$
Number of Moles	$n=\frac{m}{M}$
Temperature in Kelvin from Degrees Celsius Conversion	$K={ }^{\circ} C+273$
Combined Gas Law	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
Density of a Material	$D=\frac{m}{V}$
Root Mean Square Velocity of Gas Molecules	$u_{r m s}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}}$
Kinetic Energy per molecule	$\frac{K E}{\text { molecule }}=\frac{1}{2} m v^{2}$
Kinetic Energy per Mole	$\frac{K E}{\text { mole }}=\frac{3}{2} R T n$
Kinetic Energy per Mole	$\frac{K E}{\text { mole }}=\frac{3}{2} R T n$
Graham's Law of Effusion	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
Molarity Defined	molarity, $\quad M=\frac{\text { moles solute }}{\text { liter solution }}$
Molality Defined	$\text { molality },=\frac{\text { moles } \text { solute }}{\text { kilogram } \text { solvent }}$
Freezing Point Depression	$\Delta T_{f}=i K_{f} \times$ molality

Boiling Point Elevation	$\Delta T_{b}=i K_{b} \times$ molality
Osmotic Pressure	$\pi=\frac{n R T}{V} i$
Specific Heat Capacity to Heat Equation	$q=m c \Delta T$
Acid Ionization Constant	$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}$
Base Ionization Constant	$K_{b}=\frac{\left[O H^{-}\right]\left[H B^{+}\right]}{[B]}$
Ion Product Constant for Water	$\begin{gathered} \hline \hline K_{w}=\left[O H^{-}\right]\left[H^{+}\right]=K_{a} \times K_{b} \\ =1.0 \times 10^{-14} \quad \text { at } \quad 25^{\circ} \mathrm{C} \\ \hline \end{gathered}$
pH Defined	$p H=-\log \left[H^{+}\right]$
pOH Defined	$p O H=-\log \left[O H^{-}\right]$
pH and pOH Relationship	$14=p H+p O H$
Buffer Design Equation	$p H \approx p K_{a}-\log \frac{[H A]_{0}}{\left[A^{-}\right]_{0}}$
pOH and Base Ionization Equilibrium Constant Relationship	$p O H=p K_{b}+\log \frac{\left[H B^{+}\right]}{[B]}$
pK_{a} Definition	$p K_{a}=-\log K_{a}$
pK ${ }_{\text {b }}$ Definition	$p K_{b}=-\log K_{b}$
$\begin{aligned} & \text { Gas Pressure and } \\ & \text { Concentration Relationship } \end{aligned}$	$K_{p}=K_{c}(R T)^{\Delta n}$
Planck's Quantized (Quantum) Energy Equation	$\Delta E=h \nu$
Speed of Light to Wavelength and Frequency Relationship	$c=\lambda \nu$
De Broglie Wavelength	$\lambda=\frac{h}{m v}$
Linear Momentum	$p=m v$
Relationship between Energy and Principal Quantum Number	$E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right)=\frac{-2.178 \times 10^{-18}}{n^{2}} \text { joule }$

	$\Delta E=R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)$
mithargeman	$\ln \left(\frac{K_{2}}{K_{1}}\right)=-\frac{\Delta H^{\circ}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$

